POG Automation Diagrams¶
This page contains diagrams illustrating automation workflows and end-to-end automation architecture for the Prompt Orchestration Governance framework.
Diagram 7: End-to-End Automation Pipeline¶
This diagram shows the complete automation flow from requirements interview to deployment, demonstrating how POG enables fully automated feature development.
flowchart TB
Start([Requirements Interview]) --> Capture[AI Meeting Assistant<br/>Captures Discussion]
Capture --> Extract[Auto-Extract<br/>Key Requirements]
Extract --> US[User Story Generator<br/>AUTO]
US --> AC[Acceptance Criteria<br/>Generator AUTO]
AC --> Design{Design Phase<br/>Auto-Trigger}
Design --> Arch[Architecture Advisor<br/>AUTO]
Design --> API[API Design Generator<br/>AUTO]
Design --> Data[Data Model Generator<br/>AUTO]
Arch --> Review1{Quality Gate 1<br/>Design Review}
API --> Review1
Data --> Review1
Review1 -->|Auto-Approved| Dev[Development Phase]
Review1 -->|Needs Review| Human1[Human Review]
Human1 --> Dev
Dev --> Code[Code Generator<br/>AUTO]
Code --> Doc[Documentation Generator<br/>AUTO]
Code --> Test{Testing Phase<br/>Auto-Trigger}
Test --> TCase[Test Case Generator<br/>AUTO]
Test --> TData[Test Data Generator<br/>AUTO]
TCase --> Execute[Auto-Execute Tests]
TData --> Execute
Execute --> Review2{Quality Gate 2<br/>Test Results}
Review2 -->|All Pass| Deploy[Deployment Phase]
Review2 -->|Failures| Fix[Auto-Fix or<br/>Human Intervention]
Fix --> Code
Deploy --> RN[Release Notes Generator<br/>AUTO]
Deploy --> Config[Configuration Validator<br/>AUTO]
RN --> Prod[Deploy to Production<br/>AUTO]
Config --> Prod
Prod --> Monitor[Monitoring & Feedback<br/>AUTO]
Monitor --> Meta[Meta-Loop<br/>Continuous Improvement]
Meta -.improves prompts.-> US
Description: This end-to-end automation pipeline shows how POG can orchestrate an entire feature development from requirements interview to production deployment. Key automation points include: - Automatic extraction and structuring of requirements - Auto-triggered SDLC phase transitions - Automated code generation, testing, and deployment - Quality gates for human oversight when needed - Continuous feedback loop for improvement
Diagram 8: CI/CD Integration Architecture¶
This diagram illustrates how POG integrates with CI/CD pipelines for automated prompt deployment and execution.
graph TB
subgraph Dev["Development Environment"]
D1[Developer<br/>Creates/Refines Prompt]
D2[Local Testing]
D3[Git Commit]
end
subgraph CI["CI/CD Pipeline (GitHub Actions / GitLab CI)"]
CI1[Trigger on Commit]
CI2[Prompt Validation]
CI3[Evaluation Tests]
CI4[Quality Checks]
CI5{All Checks Pass?}
CI6[Build Artifact]
end
subgraph POG["POG Repository"]
PR1[Prompt Repository]
PR2[Version Management]
PR3[Metadata Store]
PR4[Usage Analytics]
end
subgraph Deploy["Deployment"]
DP1[Staging Environment]
DP2[Integration Tests]
DP3{Approval Gate}
DP4[Production Deployment]
end
subgraph Runtime["Runtime Execution"]
RT1[API Gateway]
RT2[Prompt Execution Engine]
RT3[Context Injection]
RT4[Response Collection]
end
subgraph Monitoring["Monitoring & Feedback"]
M1[Usage Tracking]
M2[Performance Metrics]
M3[Error Logging]
M4[Feedback Collection]
end
D1 --> D2
D2 --> D3
D3 --> CI1
CI1 --> CI2
CI2 --> CI3
CI3 --> CI4
CI4 --> CI5
CI5 -->|Yes| CI6
CI5 -->|No| D1
CI6 --> PR1
PR1 --> PR2
PR2 --> PR3
PR3 --> DP1
DP1 --> DP2
DP2 --> DP3
DP3 -->|Approved| DP4
DP3 -->|Rejected| D1
DP4 --> RT1
RT1 --> RT2
RT2 --> RT3
RT3 --> RT4
RT4 --> M1
M1 --> M2
M2 --> M3
M3 --> M4
M4 -.feedback.-> PR4
PR4 -.informs.-> D1
Description: This architecture shows POG's integration with modern CI/CD pipelines: - Development: Developers create and test prompts locally - CI Pipeline: Automated validation, testing, and quality checks - POG Repository: Centralized storage with versioning and metadata - Deployment: Staged rollout with approval gates - Runtime: Production execution with context injection - Monitoring: Comprehensive feedback loop for continuous improvement
Diagram 9: Automated SDLC Phase Transitions¶
This diagram shows how POG automatically triggers and orchestrates transitions between SDLC phases.
stateDiagram-v2
[*] --> Requirements: Interview Complete
state Requirements {
[*] --> UserStories: Auto-Generate
UserStories --> AcceptanceCriteria: Auto-Generate
AcceptanceCriteria --> RiskAnalysis: Auto-Analyze
RiskAnalysis --> [*]: Complete
}
Requirements --> Design: Auto-Trigger on Complete
state Design {
[*] --> Architecture: Auto-Design
Architecture --> APISpec: Auto-Generate
APISpec --> DataModel: Auto-Generate
DataModel --> DesignReview: Auto-Review
DesignReview --> [*]: Approved
}
Design --> Development: Auto-Trigger on Approval
state Development {
[*] --> CodeGen: Auto-Generate
CodeGen --> CodeReview: Auto-Review
CodeReview --> Documentation: Auto-Generate
Documentation --> [*]: Complete
}
Development --> Testing: Auto-Trigger on Complete
state Testing {
[*] --> TestGeneration: Auto-Generate Tests
TestGeneration --> TestExecution: Auto-Execute
TestExecution --> ResultAnalysis: Auto-Analyze
ResultAnalysis --> [*]: All Pass
}
Testing --> Deployment: Auto-Trigger on Pass
state Deployment {
[*] --> ReleaseNotes: Auto-Generate
ReleaseNotes --> ConfigValidation: Auto-Validate
ConfigValidation --> Deploy: Auto-Deploy
Deploy --> [*]: Live
}
Deployment --> Maintenance: Auto-Monitor
state Maintenance {
[*] --> Monitor: Continuous
Monitor --> Analyze: On Issue
Analyze --> Optimize: Auto-Suggest
Optimize --> [*]: Applied
}
Maintenance --> Requirements: New Feature Request
note right of Requirements
Each state auto-triggers
next phase upon completion
end note
note right of Design
Quality gates can pause
for human review
end note
note right of Testing
Failed tests trigger
auto-fix or human intervention
end note
Description: This state machine illustrates POG's automated phase transitions: - Each SDLC phase automatically triggers the next upon completion - Sub-tasks within each phase execute automatically - Quality gates provide human oversight opportunities - Failures trigger appropriate intervention (auto-fix or human review) - Continuous cycle from maintenance back to requirements
Diagram 10: Intelligent Prompt Selection & Context Injection¶
This diagram shows how POG automatically selects appropriate prompts and injects context at runtime.
flowchart TD
Input[User Request] --> Analyze[Request Analyzer<br/>NLP Classification]
Analyze --> Phase{Identify<br/>SDLC Phase}
Phase --> Task{Identify<br/>Task Type}
Task --> Select[Prompt Selector<br/>Algorithm]
Select --> Repo[(POG Prompt<br/>Repository)]
Repo --> Match[Matched Prompts<br/>with Metadata]
Match --> Rank[Ranking Algorithm<br/>- Usage stats<br/>- Success rate<br/>- Recency]
Rank --> Best[Selected Best Prompt]
Best --> Context[Context Injector]
subgraph ContextSources["Context Sources"]
C1[Project Metadata]
C2[User Profile]
C3[Environment Vars]
C4[Session History]
C5[Domain Rules]
C6[Code Repository]
end
C1 --> Context
C2 --> Context
C3 --> Context
C4 --> Context
C5 --> Context
C6 --> Context
Context --> Compose[Composed Prompt<br/>with Full Context]
Compose --> Execute[Execute via LLM]
Execute --> Response[Generated Response]
Response --> Validate{Quality<br/>Validation}
Validate -->|Pass| Output[Return to User]
Validate -->|Fail| Fallback[Fallback Strategy<br/>- Try alternate prompt<br/>- Request human input]
Fallback --> Select
Output --> Feedback[(Feedback<br/>Collection)]
Feedback -.improves.-> Repo
Description: This flow demonstrates POG's intelligent automation: - Request Analysis: NLP classification identifies intent and context - Smart Selection: Algorithm matches request to optimal prompt - Context Injection: Automatically gathers and injects relevant context from multiple sources - Quality Validation: Ensures response meets quality standards - Fallback Handling: Automatic recovery strategies for failures - Continuous Learning: Feedback improves future selections
Diagram 11: Multi-Agent Collaboration Workflow¶
This diagram illustrates how multiple AI agents collaborate within POG framework to complete complex tasks.
graph TB
Start([Complex Task Request]) --> Decompose[Task Decomposer Agent<br/>Breaks down into sub-tasks]
Decompose --> Assign[Task Coordinator Agent<br/>Assigns to specialist agents]
Assign --> A1[Requirements Agent]
Assign --> A2[Architecture Agent]
Assign --> A3[Development Agent]
Assign --> A4[Testing Agent]
A1 --> P1[(POG Repo<br/>Requirements Prompts)]
A2 --> P2[(POG Repo<br/>Design Prompts)]
A3 --> P3[(POG Repo<br/>Development Prompts)]
A4 --> P4[(POG Repo<br/>Testing Prompts)]
P1 --> R1[Execute Requirements Tasks]
P2 --> R2[Execute Design Tasks]
P3 --> R3[Execute Development Tasks]
P4 --> R4[Execute Testing Tasks]
R1 --> Share[Shared Context Store]
R2 --> Share
R3 --> Share
R4 --> Share
Share --> Integrate[Integration Agent<br/>Combines results]
Integrate --> Review[Review Agent<br/>Quality check]
Review --> Complete{All Complete<br/>& Approved?}
Complete -->|Yes| Final[Final Output]
Complete -->|No| Refine[Refinement Agent<br/>Identifies gaps]
Refine --> Assign
Final --> Learn[Learning Agent<br/>Updates POG meta-loop]
Learn -.improves.-> P1
Learn -.improves.-> P2
Learn -.improves.-> P3
Learn -.improves.-> P4
Description: Multi-agent collaboration pattern in POG: - Task Decomposition: Complex requests broken into manageable sub-tasks - Specialist Agents: Each agent focuses on specific SDLC phase - POG Integration: All agents leverage phase-appropriate prompts from repository - Shared Context: Agents collaborate via shared context store - Quality Assurance: Review agent ensures coherence and quality - Continuous Learning: Learning agent feeds insights back to POG
Automation Best Practices¶
1. Human-in-the-Loop Points¶
While POG enables extensive automation, strategic human oversight is crucial:
- Quality Gates: Design review, critical security decisions
- Compliance Checks: Regulatory requirements, legal reviews
- Creative Decisions: UX design choices, brand alignment
- Risk Assessment: High-impact changes, production deployments
2. Fallback Strategies¶
Automation should include robust fallback mechanisms:
- Confidence Thresholds: Route low-confidence outputs to human review
- Alternate Prompts: Try different prompts if first attempt fails
- Escalation Paths: Clear escalation when automation cannot proceed
- Manual Override: Always allow human intervention
3. Monitoring & Alerting¶
Comprehensive monitoring ensures automation health:
- Success Rates: Track automation success vs. fallback rates
- Performance Metrics: Monitor latency, cost, quality
- Anomaly Detection: Alert on unusual patterns or errors
- Feedback Loops: Continuous improvement based on outcomes
Implementation Considerations¶
Gradual Automation Adoption¶
- Phase 1: Manual with POG: Use POG prompts manually
- Phase 2: Automate simple, low-risk tasks
- Phase 3: Add CI/CD integration
- Phase 4: Implement phase auto-transitions
- Phase 5: Full end-to-end automation with oversight
Technology Requirements¶
- Orchestration Platform: Airflow, Temporal, or custom
- CI/CD System: GitHub Actions, GitLab CI, Jenkins
- API Gateway: For runtime prompt execution
- Monitoring Stack: Prometheus, Grafana, ELK
- Storage: Git + database for prompt repository
Security & Compliance¶
- Access Control: Role-based access to automation triggers
- Audit Trails: Complete logging of automated actions
- Secrets Management: Secure handling of credentials
- Compliance: Ensure automated processes meet regulatory requirements
Back to Main Documentation | Diagrams