Skip to content

POG Automation Diagrams

This page contains diagrams illustrating automation workflows and end-to-end automation architecture for the Prompt Orchestration Governance framework.


Diagram 7: End-to-End Automation Pipeline

This diagram shows the complete automation flow from requirements interview to deployment, demonstrating how POG enables fully automated feature development.

flowchart TB
    Start([Requirements Interview]) --> Capture[AI Meeting Assistant<br/>Captures Discussion]
    Capture --> Extract[Auto-Extract<br/>Key Requirements]

    Extract --> US[User Story Generator<br/>AUTO]
    US --> AC[Acceptance Criteria<br/>Generator AUTO]

    AC --> Design{Design Phase<br/>Auto-Trigger}
    Design --> Arch[Architecture Advisor<br/>AUTO]
    Design --> API[API Design Generator<br/>AUTO]
    Design --> Data[Data Model Generator<br/>AUTO]

    Arch --> Review1{Quality Gate 1<br/>Design Review}
    API --> Review1
    Data --> Review1

    Review1 -->|Auto-Approved| Dev[Development Phase]
    Review1 -->|Needs Review| Human1[Human Review]
    Human1 --> Dev

    Dev --> Code[Code Generator<br/>AUTO]
    Code --> Doc[Documentation Generator<br/>AUTO]

    Code --> Test{Testing Phase<br/>Auto-Trigger}
    Test --> TCase[Test Case Generator<br/>AUTO]
    Test --> TData[Test Data Generator<br/>AUTO]
    TCase --> Execute[Auto-Execute Tests]
    TData --> Execute

    Execute --> Review2{Quality Gate 2<br/>Test Results}
    Review2 -->|All Pass| Deploy[Deployment Phase]
    Review2 -->|Failures| Fix[Auto-Fix or<br/>Human Intervention]
    Fix --> Code

    Deploy --> RN[Release Notes Generator<br/>AUTO]
    Deploy --> Config[Configuration Validator<br/>AUTO]
    RN --> Prod[Deploy to Production<br/>AUTO]
    Config --> Prod

    Prod --> Monitor[Monitoring & Feedback<br/>AUTO]
    Monitor --> Meta[Meta-Loop<br/>Continuous Improvement]
    Meta -.improves prompts.-> US

Description: This end-to-end automation pipeline shows how POG can orchestrate an entire feature development from requirements interview to production deployment. Key automation points include: - Automatic extraction and structuring of requirements - Auto-triggered SDLC phase transitions - Automated code generation, testing, and deployment - Quality gates for human oversight when needed - Continuous feedback loop for improvement


Diagram 8: CI/CD Integration Architecture

This diagram illustrates how POG integrates with CI/CD pipelines for automated prompt deployment and execution.

graph TB
    subgraph Dev["Development Environment"]
        D1[Developer<br/>Creates/Refines Prompt]
        D2[Local Testing]
        D3[Git Commit]
    end

    subgraph CI["CI/CD Pipeline (GitHub Actions / GitLab CI)"]
        CI1[Trigger on Commit]
        CI2[Prompt Validation]
        CI3[Evaluation Tests]
        CI4[Quality Checks]
        CI5{All Checks Pass?}
        CI6[Build Artifact]
    end

    subgraph POG["POG Repository"]
        PR1[Prompt Repository]
        PR2[Version Management]
        PR3[Metadata Store]
        PR4[Usage Analytics]
    end

    subgraph Deploy["Deployment"]
        DP1[Staging Environment]
        DP2[Integration Tests]
        DP3{Approval Gate}
        DP4[Production Deployment]
    end

    subgraph Runtime["Runtime Execution"]
        RT1[API Gateway]
        RT2[Prompt Execution Engine]
        RT3[Context Injection]
        RT4[Response Collection]
    end

    subgraph Monitoring["Monitoring & Feedback"]
        M1[Usage Tracking]
        M2[Performance Metrics]
        M3[Error Logging]
        M4[Feedback Collection]
    end

    D1 --> D2
    D2 --> D3
    D3 --> CI1

    CI1 --> CI2
    CI2 --> CI3
    CI3 --> CI4
    CI4 --> CI5

    CI5 -->|Yes| CI6
    CI5 -->|No| D1
    CI6 --> PR1

    PR1 --> PR2
    PR2 --> PR3
    PR3 --> DP1

    DP1 --> DP2
    DP2 --> DP3
    DP3 -->|Approved| DP4
    DP3 -->|Rejected| D1

    DP4 --> RT1
    RT1 --> RT2
    RT2 --> RT3
    RT3 --> RT4

    RT4 --> M1
    M1 --> M2
    M2 --> M3
    M3 --> M4
    M4 -.feedback.-> PR4
    PR4 -.informs.-> D1

Description: This architecture shows POG's integration with modern CI/CD pipelines: - Development: Developers create and test prompts locally - CI Pipeline: Automated validation, testing, and quality checks - POG Repository: Centralized storage with versioning and metadata - Deployment: Staged rollout with approval gates - Runtime: Production execution with context injection - Monitoring: Comprehensive feedback loop for continuous improvement


Diagram 9: Automated SDLC Phase Transitions

This diagram shows how POG automatically triggers and orchestrates transitions between SDLC phases.

stateDiagram-v2
    [*] --> Requirements: Interview Complete

    state Requirements {
        [*] --> UserStories: Auto-Generate
        UserStories --> AcceptanceCriteria: Auto-Generate
        AcceptanceCriteria --> RiskAnalysis: Auto-Analyze
        RiskAnalysis --> [*]: Complete
    }

    Requirements --> Design: Auto-Trigger on Complete

    state Design {
        [*] --> Architecture: Auto-Design
        Architecture --> APISpec: Auto-Generate
        APISpec --> DataModel: Auto-Generate
        DataModel --> DesignReview: Auto-Review
        DesignReview --> [*]: Approved
    }

    Design --> Development: Auto-Trigger on Approval

    state Development {
        [*] --> CodeGen: Auto-Generate
        CodeGen --> CodeReview: Auto-Review
        CodeReview --> Documentation: Auto-Generate
        Documentation --> [*]: Complete
    }

    Development --> Testing: Auto-Trigger on Complete

    state Testing {
        [*] --> TestGeneration: Auto-Generate Tests
        TestGeneration --> TestExecution: Auto-Execute
        TestExecution --> ResultAnalysis: Auto-Analyze
        ResultAnalysis --> [*]: All Pass
    }

    Testing --> Deployment: Auto-Trigger on Pass

    state Deployment {
        [*] --> ReleaseNotes: Auto-Generate
        ReleaseNotes --> ConfigValidation: Auto-Validate
        ConfigValidation --> Deploy: Auto-Deploy
        Deploy --> [*]: Live
    }

    Deployment --> Maintenance: Auto-Monitor

    state Maintenance {
        [*] --> Monitor: Continuous
        Monitor --> Analyze: On Issue
        Analyze --> Optimize: Auto-Suggest
        Optimize --> [*]: Applied
    }

    Maintenance --> Requirements: New Feature Request

    note right of Requirements
        Each state auto-triggers
        next phase upon completion
    end note

    note right of Design
        Quality gates can pause
        for human review
    end note

    note right of Testing
        Failed tests trigger
        auto-fix or human intervention
    end note

Description: This state machine illustrates POG's automated phase transitions: - Each SDLC phase automatically triggers the next upon completion - Sub-tasks within each phase execute automatically - Quality gates provide human oversight opportunities - Failures trigger appropriate intervention (auto-fix or human review) - Continuous cycle from maintenance back to requirements


Diagram 10: Intelligent Prompt Selection & Context Injection

This diagram shows how POG automatically selects appropriate prompts and injects context at runtime.

flowchart TD
    Input[User Request] --> Analyze[Request Analyzer<br/>NLP Classification]

    Analyze --> Phase{Identify<br/>SDLC Phase}
    Phase --> Task{Identify<br/>Task Type}

    Task --> Select[Prompt Selector<br/>Algorithm]

    Select --> Repo[(POG Prompt<br/>Repository)]

    Repo --> Match[Matched Prompts<br/>with Metadata]

    Match --> Rank[Ranking Algorithm<br/>- Usage stats<br/>- Success rate<br/>- Recency]

    Rank --> Best[Selected Best Prompt]

    Best --> Context[Context Injector]

    subgraph ContextSources["Context Sources"]
        C1[Project Metadata]
        C2[User Profile]
        C3[Environment Vars]
        C4[Session History]
        C5[Domain Rules]
        C6[Code Repository]
    end

    C1 --> Context
    C2 --> Context
    C3 --> Context
    C4 --> Context
    C5 --> Context
    C6 --> Context

    Context --> Compose[Composed Prompt<br/>with Full Context]

    Compose --> Execute[Execute via LLM]

    Execute --> Response[Generated Response]

    Response --> Validate{Quality<br/>Validation}

    Validate -->|Pass| Output[Return to User]
    Validate -->|Fail| Fallback[Fallback Strategy<br/>- Try alternate prompt<br/>- Request human input]

    Fallback --> Select

    Output --> Feedback[(Feedback<br/>Collection)]
    Feedback -.improves.-> Repo

Description: This flow demonstrates POG's intelligent automation: - Request Analysis: NLP classification identifies intent and context - Smart Selection: Algorithm matches request to optimal prompt - Context Injection: Automatically gathers and injects relevant context from multiple sources - Quality Validation: Ensures response meets quality standards - Fallback Handling: Automatic recovery strategies for failures - Continuous Learning: Feedback improves future selections


Diagram 11: Multi-Agent Collaboration Workflow

This diagram illustrates how multiple AI agents collaborate within POG framework to complete complex tasks.

graph TB
    Start([Complex Task Request]) --> Decompose[Task Decomposer Agent<br/>Breaks down into sub-tasks]

    Decompose --> Assign[Task Coordinator Agent<br/>Assigns to specialist agents]

    Assign --> A1[Requirements Agent]
    Assign --> A2[Architecture Agent]
    Assign --> A3[Development Agent]
    Assign --> A4[Testing Agent]

    A1 --> P1[(POG Repo<br/>Requirements Prompts)]
    A2 --> P2[(POG Repo<br/>Design Prompts)]
    A3 --> P3[(POG Repo<br/>Development Prompts)]
    A4 --> P4[(POG Repo<br/>Testing Prompts)]

    P1 --> R1[Execute Requirements Tasks]
    P2 --> R2[Execute Design Tasks]
    P3 --> R3[Execute Development Tasks]
    P4 --> R4[Execute Testing Tasks]

    R1 --> Share[Shared Context Store]
    R2 --> Share
    R3 --> Share
    R4 --> Share

    Share --> Integrate[Integration Agent<br/>Combines results]

    Integrate --> Review[Review Agent<br/>Quality check]

    Review --> Complete{All Complete<br/>& Approved?}

    Complete -->|Yes| Final[Final Output]
    Complete -->|No| Refine[Refinement Agent<br/>Identifies gaps]

    Refine --> Assign

    Final --> Learn[Learning Agent<br/>Updates POG meta-loop]
    Learn -.improves.-> P1
    Learn -.improves.-> P2
    Learn -.improves.-> P3
    Learn -.improves.-> P4

Description: Multi-agent collaboration pattern in POG: - Task Decomposition: Complex requests broken into manageable sub-tasks - Specialist Agents: Each agent focuses on specific SDLC phase - POG Integration: All agents leverage phase-appropriate prompts from repository - Shared Context: Agents collaborate via shared context store - Quality Assurance: Review agent ensures coherence and quality - Continuous Learning: Learning agent feeds insights back to POG


Automation Best Practices

1. Human-in-the-Loop Points

While POG enables extensive automation, strategic human oversight is crucial:

  • Quality Gates: Design review, critical security decisions
  • Compliance Checks: Regulatory requirements, legal reviews
  • Creative Decisions: UX design choices, brand alignment
  • Risk Assessment: High-impact changes, production deployments

2. Fallback Strategies

Automation should include robust fallback mechanisms:

  • Confidence Thresholds: Route low-confidence outputs to human review
  • Alternate Prompts: Try different prompts if first attempt fails
  • Escalation Paths: Clear escalation when automation cannot proceed
  • Manual Override: Always allow human intervention

3. Monitoring & Alerting

Comprehensive monitoring ensures automation health:

  • Success Rates: Track automation success vs. fallback rates
  • Performance Metrics: Monitor latency, cost, quality
  • Anomaly Detection: Alert on unusual patterns or errors
  • Feedback Loops: Continuous improvement based on outcomes

Implementation Considerations

Gradual Automation Adoption

  1. Phase 1: Manual with POG: Use POG prompts manually
  2. Phase 2: Automate simple, low-risk tasks
  3. Phase 3: Add CI/CD integration
  4. Phase 4: Implement phase auto-transitions
  5. Phase 5: Full end-to-end automation with oversight

Technology Requirements

  • Orchestration Platform: Airflow, Temporal, or custom
  • CI/CD System: GitHub Actions, GitLab CI, Jenkins
  • API Gateway: For runtime prompt execution
  • Monitoring Stack: Prometheus, Grafana, ELK
  • Storage: Git + database for prompt repository

Security & Compliance

  • Access Control: Role-based access to automation triggers
  • Audit Trails: Complete logging of automated actions
  • Secrets Management: Secure handling of credentials
  • Compliance: Ensure automated processes meet regulatory requirements

Back to Main Documentation | Diagrams